NR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning

نویسندگان

  • C. E. Andreescu
  • F. Prestori
  • F. Brandalise
  • A. D'Errico
  • M.T.G. De Jeu
  • P. Rossi
  • L. Botta
  • G. Kohr
  • P. Perin
  • E. D'Angelo
  • C. I. De Zeeuw
چکیده

Traditionally studies aimed at elucidating the molecular mechanisms underlying cerebellar motor learning have been focused on plasticity at the parallel fiber to Purkinje cell synapse. In recent years, however, the concept is emerging that formation and storage of memories are both distributed over multiple types of synapses at different sites. Here, we examined the potential role of potentiation at the mossy fiber to granule cell synapse, which occurs upstream to plasticity in Purkinje cells. We show that null-mutants of N-methyl d-aspartate-NR2A receptors (NMDA-NR2A(-/-) mice) have impaired induction of postsynaptic long-term potentiation (LTP) at the mossy fiber terminals and a reduced ability to raise the granule cell synaptic excitation, while the basic excitatory output of the mossy fibers is unaffected. In addition, we demonstrate that these NR2A(-/-) mutants as well as mutants in which the C terminal in the NR2A subunit is selectively truncated (NR2A(ΔC/ΔC) mice) have deficits in phase reversal adaptation of their vestibulo-ocular reflex (VOR), while their basic eye movement performance is similar to that of wild type littermates. These results indicate that NMDA-NR2A mediated potentiation at the mossy fiber to granule cell synapse is not required for basic motor performance, and they raise the possibility that it may contribute to some forms of vestibulo-cerebellar memory formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse.

The C-terminal domain of NMDA receptor 2 (NR2) subunits has been proposed to play a critical role in regulating NMDA receptor localization and function in postsynaptic densities. However, the mechanism of this regulation is not completely understood. In this paper we show that C-terminal truncation of NR2A and NR2C subunits in mice (NR2A/C(DeltaC/DeltaC)) impairs synaptic transmission and plast...

متن کامل

Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum.

Long-term potentiation (LTP) is a form of synaptic plasticity that can be revealed at numerous hippocampal and neocortical synapses following high-frequency activation of N-methyl--aspartate (NMDA) receptors. However, it was not known whether LTP could be induced at the mossy fiber-granule cell relay of cerebellum. This is a particularly interesting issue because theories of the cerebellum do n...

متن کامل

Impact of NMDA Receptor Overexpression on Cerebellar Purkinje Cell Activity and Motor Learning

In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and...

متن کامل

Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum.

Synaptic activity can induce persistent modifications in the way a neuron reacts to subsequent inputs by changing either synaptic efficacy or intrinsic excitability. After high-frequency synaptic stimulation, long-term potentiation (LTP) of synaptic efficacy is commonly observed at hippocampal synapses (Bliss and Collingridge, 1993), and potentiation of intrinsic excitability has recently been ...

متن کامل

Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit.

The waggler, a neurological mutant mouse with a disrupted putative neuronal Ca(2+) channel gamma subunit, exhibits a cerebellar granule cell-specific brain-derived neurotrophic factor deficit, severe ataxia, and impaired eyeblink conditioning. Here, we show that multiple synapses of waggler cerebellar granule cells are arrested at an immature stage during development. Synaptic transmission is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2011